Concepts of Event Reconstruction

Summer Detector/Computer Lecture

Mark Ito July 21, 2006

Directly Detectable Particles

- ullet electrons, positrons: e^\pm , lightest charged lepton
- \bullet photons: γ , gauge boson for electromagnetic force
- pions: π^{\pm} , lightest mesons
- kaons: K^{\pm} , K_L , lightest strange mesons
- protons: p, lightest charged baryon
- neutrons: *n*, lightest baryon
- nuclei: He, C, PB, etc.

Detectable because relatively long-lived, something inhibits decay in each case.

Particle Properties

- charged/neutral: feel EM force?
- strongly interacting: hadrons, e. g., mesons, baryons, pentaquarks
- massive/massless
- showering (electromagnetic or hadronic): energy >> mass, significant interaction cross-section
- four-momentum: E, \vec{p}
- polarization/spin

Particle Detectors

Detector	Enabling Property	Measured Property
Drift Chambers	charged	position
Time-of-Flight Counters	charged	transit time
Shower Counters	showering	energy
Cerenkov Counters	charged	velocity

Drift Chambers

- Charged particles only
- Measurement of drift time
 - Convert to a drift distance
 - * known distance-to-time relation
 - * drift velocity \approx 5 cm/ μ s
 - Position measurement in dimension
 - * \perp to wire \Leftarrow electron drift direction
 - $* \perp$ to particle trajectory \Leftarrow point of closet approach detected

- Turn into a trajectory
 - Trial trajectory, with parameters
 - * Field-free: straight line
 - * Uniform magnetic field: helix
 - * Non-uniform magnetic field: launch parameters, then solve differential equation (numerically)
 - Least-squares fit
 - * vary parameters, get different trajectories
 - * minimize

$$\chi^2 = \sum_{i} \left(\frac{x_{\text{meas},i} - x_{\text{traj},i}}{\sigma_i} \right)^2$$

* errors from known measurement error of chamber

- Additional error from multiple Coulomb scattering
 - elastic scattering from atomic nuclei
 - little loss of energy
 - many small changes of direction
 - Kalman filter: weight hits in presence of correlation

- With magnetic field get momentum
 - Lorentz force

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

where \vec{F} is force, q is charge, \vec{E} is electric field, \vec{v} is velocity, \vec{B} is magnetic field, SI units

- magnetic bending does no work
- radius of curvature proportional to momentum

$$p_{\perp} = (0.3)BR$$

where p_{\perp} is momentum transverse to field, B is magnetic field in Tesla, R is radius of curvature in meters

only get component of momentum transverse to field

- Dipole magnet example
 - small angle approximation
 - p_t kick (momentum transverse to field direction)

$$\Delta p_t = (0.3)Bl$$

where l is distance traveled in field, independent of momentum

- $-\theta \approx \Delta p_t/p_t$
- resolution in momentum: $\sigma_{p_t}/p_t \propto p_t \sigma_x/Bl$

CLAS Detector, side view

Region 3 Drift Chambers, axial and stereo superlayers

Time-of-Flight Counters

- Charged particles (usually)
- Measures "end" of propagation time
- Gives velocity if start time and trajectory is known
- Gives mass if momentum is known as well

$$p = \gamma \beta mc$$

$$\gamma = \sqrt{\frac{1}{1 - \beta^2}}$$

$$\beta = \frac{v}{c}$$

where m is the rest mass of the particle

- E. g., pion vs. kaon
 - $-m_{\pi^+}=$ 140 MeV/ c^2
 - $-m_{K^+} = 494 \text{ MeV}/c^2$

CLAS drift chamber and time-of-flight particle identification

Shower Counters

- Electromagnetic shower
 - electrons and positrons bremsstrahlung photons
 - * nuclear Coulomb field
 - photons produce electron positron pairs
 - * nuclear Coulomb field
 - cascade, tree-like effect
 - length scale set by material's radiation length, X_0
- Hadronic shower
 - hadrons interact producing hadrons
 - nuclear strong interaction
 - length scale set by material's interaction length, λ_I

Electromagnetic shower

• Shower properties

- Charged particles create a signal
- Exponential increase in number of particles initially
- Shower dies as particles lose energy
- Most of charged particles created "deep" into shower

- Energy measurement
 - Sum signals from all charged particles (E&M: e^{\pm}) in shower
 - Sum proportional to energy of original particle
 - * $E_{\text{incident}} \propto N_{e^{\pm}}$
 - * Signal $\propto N_{e^\pm}$
 - * resolution $\sigma_E \propto \sqrt{E}$
- Position measurement
 - Detector position known
 - If signal shared between adjacent modules
 - * Compare relative signal
 - * Interpolate position

Position determination for a shower counter

Cerenkov Counters

- Principle of operation
 - Light emitted when charged particle moves faster than speed of light in a medium.

$$v > \frac{c}{n}$$

where c is speed of light, n is index of refraction in medium

Light emitted at a characteristic angle from trajectory

$$\theta_C = \arccos \frac{c}{nv}$$

where θ_C is the half-angle of cone of emission (Cerenkov angle)

Bow waves and the Cerenkov angle

• Threshold

- Fast? Yes or no answer.
- E. g., electron vs. pion

• Differential

- Given trajectory, measure angle
- Gives velocity, quantitatively

Particle Physics Booklet

- Free
- Useful
- To get one, go to http://pdg.lbl.gov and click on "Ordering Information"

\$Id: reconstruction_2006.tex,v 1.5 2006/07/21 14:53:48 marki Exp \$